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Consideration of the Lifshitz expression for the Casimir free energy on the real frequency axis rather than
the imaginary Matsubara frequencies as is customary sheds light on the ongoing debate regarding the thermo-
dynamical consistency of this theory in combination with common permittivity models. It is argued that when
permittivity is temperature independent over a temperature interval including zero temperature, a cavity made
of causal material with continuous dispersion properties separated by vacuum cannot violate Nernst’s theorem
(the third law of thermodynamics). The purported violation of this theorem pertains to divergencies in the
double limit in which frequency and temperature vanish simultaneously. While any model should abide by the
laws of thermodynamics within its range of applicability, we emphasize that the Nernst heat theorem is a
relevant criterion for choosing among candidate theories only when these theories are fully applicable at zero

temperature and frequency.
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INTRODUCTION

Since Bostrom and Sernelius first predicted the existence
of large thermal corrections to the Casimir force in 2000 [1],
controversies over the thermal behavior of this effect, which
in its most typical embodiment may be seen as the attraction
between macroscopic objects due to zero-point fluctuations
of the quantum vacuum, have been extensively covered in
the published literature. The use of the Drude model to de-
scribe dielectric permittivity employed in [1] was soon criti-
cized on thermodynamical grounds [2]. The reason was that
in the case of a perfect crystal lattice, when all dissipation is
due to scattering of electrons on thermal phonons, the Ca-
simir free energy as calculated with the Lifshitz formula ap-
pears to violate Nernst’s heat theorem which states that en-
tropy should vanish as 7—0. The Drude model was
defended by other authors [3-5] who argued that, since the
Drude model offers a better description of impure metals,
and since real metal samples always have impurities, the
Drude model must be employed. It was shown in [6] and
recently in a more extensive treatment [7] that the free en-
ergy with Drude permittivity is quadratic in 7 for small tem-
peratures when impurities are present. No consensus has yet
been reached on the important physical question of why Ca-
simir force predictions for the perfect lattice model, impor-
tant in solid state physics, differ significantly from those per-
taining to real metals with a very small but nonzero
concentration of imperfections.

Recently, a somewhat analogous problem was brought
forth for dielectrics with a small conductivity for finite T
which vanishes at T=0 [8]. While the purported violation in
the case of Drude metals referred to the transverse electric
(TE) mode, this time the bother appears to be a discontinuity
in the transverse magnetic (TM) Fresnel reflection coefficient
giving rise to nonzero entropy at zero temperature. The prob-
lem was recently argued to extend to insulators and intrinsic
and lightly doped semiconductors as well as Mott-Hubbard
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semiconductors, and indeed the permittivity contribution
from Debye rotation of molecular dipoles [9].

According to the argument presented herein both the
Drude model and the dielectric permittivity model with con-
ductivity included belong to a group of permittivities which
cannot violate Nernst’s theorem when permittivity can be
regarded as temperature invariant in a range of temperatures
near and including 7=0. While the present paper does not
aspire to solve the physical question of how to take into
account the presence of a small conductivity in dielectrics
when substituted into the Lifshitz formula, it seeks to illumi-
nate the ever recurring question of thermodynamical consis-
tency. It has previously been shown [10] by use of the Euler-
Maclaurin (or equivalently Abel-Plana) formula that, for
Fresnel reflection coefficients which are continuous func-
tions of imaginary frequencies in the limit 7— 0, Nernst’s
theorem is satisfied. An exploration of Casimir entropy in the
formalism of surface modes was undertaken independently
of this work by Intravaia and Henkel [11] whose conclusions
accord with ours. By a method of summation of the eigen-
modes of the vacuum between two plates they demonstrate
that Nernst’s theorem can be broken between metal plates
only for temperature-dependent relaxation such as in a per-
fect and infinitely large metal lattice.

This paper demonstrates a similar result using the real
frequency Lifshitz formalism between plates of a generic
nonmagnetic material whose permittivity satisfies a small set
of criteria. The real frequency formalism is more compli-
cated and less elegant, but with the advantage of a more
direct physical interpretation. Finally, a discussion of the
physical implications of the mathematical limits involved is
given. In particular, we emphasize the importance of assess-
ing when Nernst’s theorem, which concerns zero tempera-
ture, can be used to inform finite-temperature physics.

I. FREE ENERGY AND ENTROPY AT REAL
FREQUENCIES

The Lifshitz expression [12] for the free energy per unit
transverse area between two identical dielectric plates sepa-
rated by vacuum is in general of the form
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Fa,T) = J do coth<21>1m{¢(w, )0, (1)
0

wr

where w;=kgT/h and ¢(w,T) is the zero-temperature inte-
grand

™
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We have assumed u=1 everywhere for simplicity, € is the
permittivity of the dielectric relative to vacuum, and

Ko= (kzl — YAV, k= (k2L - ew’/c?). (4)
We assume that € does not depend on transverse momentum,
thus neglecting any nonlocal effects and furthermore that it is
a generalized susceptibility and obeys causality, which im-
plies in particular that [13] (1) e(-0*)=€%(w); (2)
[Im{€e(w)}|>0 on the entire real frequency axis except at
=0 where it may be undefined. In general € is also tempera-
ture dependent, making for the temperature dependence of
¢(w,T). The complex conjugate is denoted with an asterisk
and we will consider only real frequencies henceforth. One
might furthermore impose the physically reasonable demand
that (3) €(w) is continuous and |e(w)| <o for all real fre-
quencies except possibly w=0.

The function ¢ obeys the symmetry property
d(—w)=d*(w) for real frequencies,1 hence the real part of
¢(w) is even with respect to w while its imaginary part is
odd. This allows us to write F in a form that makes the
mathematical discussion in the following somewhat more
transparent. Since both Im¢ and coth(w/2w;) are odd func-
tions of w, the integrand of (1) is even and we can let the @
integral run from — to % and divide by 2. Adding the real
part of ¢ by substituting Im¢— ¢/i will make no difference,
since it makes for an odd integrand term which vanishes
under symmetrical integration, so

©

dw coth(zi)cb(w,T) (5)

wr

1
Fa,T) = 2—

L)

is equivalent to (1).

Assume for the moment that €, and hence ¢, is invariant
with temperature over at least a finite range of small tem-
peratures including 7=0. In this case the temperature depen-
dence of F(T) can be treated very simply when T is in this
range, since the 7 dependence now resides only in the factor

"This is easily argued: Because e satisfies this relation by assump-
tion, so, one finds, does D,,. The logarithm of a complex function is
infinitely degenerate, and for In D, to give meaning we should in-
terpret it as its principal value, lanEln\Dq| +i ArgD,, which inci-
dentally also satisfies InD (-w)=[InD (w)]*.
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coth(w/2wy). From thermodynamics the Casimir entropy in
the cavity, S, is given as

d
S=- a—Tf(T), (6)

so if one were able to interchange integration and differen-
tiation with respect to 7, one could write

1 (” d w
S=- —.f do ¢(w)— coth(—)
2i)_., dT 2wy
fi

w exp(w/wy)

f do ¢(w) (7)

T kT [exp(w/wp) — 1T

For any finite w the integrand of (7) vanishes extremely
fast, as exp(~#|w|/kgT), when T— 0. This demonstrates the
finding of Torgerson and Lamoreaux [14] that temperature
corrections are important only for frequencies below wy,
which is a very low frequency even at room temperature
(~10"3 rad/s). At =0 (and finite T) the rightmost fraction
in (7) has a simple pole, yet only the imaginary part of ¢(w)
contributes to (7), which is zero here since Im{¢} is an odd
function of w, removing this pole. Thus, in the limit 7—0,
entropy vanishes as it should and the third law of thermody-
namics is obeyed (there are subtleties pertaining to the TM
mode as will be discussed in the following).

Two questions arise from this consideration, Under what
circumstances may differentiation be interchanged with inte-
gration? And what happens if one or more parameters of
e(w) are temperature dependent all the way down to zero
temperature?

II. TEMPERATURE-INDEPENDENT e(w)

We will treat the first question first. Leibnitz’ integral rule
for improper integrals,

d (” > d
EL) dx f(x,y) = LO dxaf(x,y), (8)

is always valid when ([15] §4.44) (i) f(x,y) and df(x,y)/dy
are both continuous on x € [x,,%) and the relevant interval of
values of y; (ii) the integral on the left exists; and (iii) the
integral on the right converges uniformly. The generalization
to integrals with both limits infinite is trivial.

To make our considerations more concrete, let us concen-
trate on some permittivity models which are in common use:

2

w)=1-—2— )
o(w+iv)
€.— 1 io
elw)=1+ +—, (10)

I- wz/w% - iyw/w% €W

of which the former is the Drude model for metals, and the
latter describes a semiconductor. Here w), is the plasma fre-
quency, v the relaxation frequency, €, the vacuum permittiv-
ity, and €., v, and w, material parameters. o is the dc con-
ductivity of the semiconductor. Some common models which
obey criterion 1 but not 2 are
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dw)=1-"2, (11)
w
(@)=1+— (12)
ew)=1+ ,
l—cuz/w0

the plasma model” for metals and a model of dielectrics with
4 function dissipation at w=w, [17]. Notice that (9) and (10)
obey criteria 1-3.

A. Propagating and evanescent waves

One notices that we seem to run into trouble with the
continuity criterion at |w|=ck,, where k=0, since, when
regarded as a double integral, (5) seems at first glance to
imply integration across the lines w= *ck,, which would
cause trouble with continuity: one sees from (3a) that D,
=0 for k,=0; hence the real part of InD, is undefined and the
imaginary part turns out to be discontinuous as these lines
are crossed.

The problem can be avoided, however. Let us define 8
=k ¢/ w for short. For positive frequencies, S=1 is the limit
in which the electromagnetic fields in the cavity travel par-
allel to the plates and become evanescent in vacuum as the
B=1 barrier is crossed, a limit whose discontinuous proper-
ties are physically obvious: the waves just on the propagating
side (ck, just smaller than w) travel through the system just
gracing the surfaces, while the fields on the evanescent side
stay on the surfaces; they are qualitatively different phenom-
ena and the transition from one to the other can be expected
to be discontinuous.’ Negative frequencies have no direct
physical meaning; hence the terms “propagating” and “eva-
nescent” must be understood in a mathematical sense here,
defined by |B|<1 and |B|> 1, respectively.

In the original Lifshitz paper [12], the k| integral is split
automatically into propagating and evanescent parts by sub-
stituting p=ikyc/ w. Propagating contributions correspond to
integrating p from 1 to 0 and evanescent to an integral from
i0 to ie, thus avoiding the problem. We notice furthermore
that the issues related to |8|=1 occur for any choice of €(w)
and hence can have nothing to do with the problems with
Nernst’s theorem, which all concern particular permittivity
models.

B. Continuity

In the classical treatment by Casimir, the vacuum energy
shift was found by summing over the cavity modes of the
system [18], a method developed further by van Kampen er
al. by use of the so-called generalized argument principle
[19] and elaborated by Barash and Ginzburg [20]. The nor-
mal modes of the cavity solve the characteristic equation of
the set of electromagnetic boundary conditions which reduce
to the equation D,=0. At these frequencies ¢(w) would have

A generalized, causal form of the plasma model was recently
proposed [16].

*Due to the nonzero imaginary part of € there are no similar prob-
lems for k near ck | =|w|VRe{e(w)}.
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poles which would cause trouble with continuity.

With permittivity models such as (9) and (10) where dis-
sipation is included [i.e., €(w) has a nonzero imaginary part],
D(w,k;)=0 has no real-frequency solutions” except possibly
w=0 since r, # 1 everywhere. The same is the case with (12)
if an imaginary term is inserted in the denominator as in (10)
(otherwise |r,|=1 at @=awy). The real-valued permittivities as
given in (11) and (12) cause rry to diverge where exy+ x
=0, however, in transgression of the continuity criterion. We
conclude that the continuity of ¢(w) is ensured for all w
#0 so long as P s finite, continuous and #1, sufficient
criteria for which are that €(w) satisfies criteria 1-3.

What remains is the point w=0. A priori, this is the inter-
esting limit, since when T is very small, the coth function in
(5) differs from unity only very close to zero frequency. As is
well known, reflection coefficients are occasionally ill de-
fined in the limit where w and ck, both approach zero, as is
the case for the Drude model TE reflection coefficient, for
example. rfi is always bounded, however, so the integrand of
¢(w) approaches zero in this limit due to the factor k|, stem-
ming from the isotropic infinitesimal d*k | =2mk dk, for
any B# 1. Hence ¢(w) is continuous for all w if €(w) obeys
criterion 3.

A more serious problem is caused by the simple poles of
coth(w/2wy) and its T derivative at w=0. As argued previ-
ously, the imaginary part of ¢(w) is zero at w=0, so the
integrand of (7) does not diverge, but is in some cases finite
in this limit. For sufficiently small w and finite o, (9) and
(10) both have the form e~A+iB/w where A and B are
constants, while if o=0 (10) instead has the form e~A
+iBw. In both cases the imaginary part of r%E falls off
quickly, as @’ and ’, respectively, but when A # 1, Im{r%M}
decreases only linearly. One easily verifies that, with respect
to w, Im{d)(w)}OCIm{rfl(w)} to leading order; hence the TM
mode term of ¢(w) is proportional to w in the above men-
tioned cases.

To see how this is troublesome, consider the functions

x/2t —x/2t
Hx,t)=x——""7, 13
( ) ex/2t _ e—x/2t ( )
2 xl/t
1) = —— (14)

t2(ex/t _ 1)2 ’

which are essentially (up to a constant factor) the integrands
of (5) and (7), respectively, when ¢(w) < w; here x and 7 are
suitably nondimensionalized frequency and temperature, re-
spectively, so that w/wy=x/t. Notice that dH/dt=21. Equa-
tions (13) and (14) are plotted in Fig. 1 for x and . If we
define H(0,0) to be its limiting value 0, the integrand of (5)
is continuous for all w and T as we hoped, but its 7" deriva-
tive [essentially I(x,7)] is not. As T— 0, the integrand of (7)
becomes a spike of finite height and zero width. The integral
past this spike is clearly zero (so the entropy would be zero
as concluded above), but we run into trouble with the conti-
nuity condition. Were the limit 7—0 to be taken prior to

*Sernelius has recently shown how the normal mode interpretation
may still be applied [21].
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FIG. 1. Equations (13) and (14) as functions of x and z. The
functions H and I are essentially the integrands of (5) and (7) when

P(w) > w.

integration, 7(0,0) would be zero instead, and I would be
continuous with respect to x but discontinuous with respect
to 1.

Physically it does not matter whether 1(0,0) is 1, 0, or
something in between, since the contribution from this single
point is zero in either case. Hence this one point should not
matter. Formally we could state this by excluding the point
=0 from the w integrals (5) and (7). Furthermore it is well
known that the notion that every €(w) in the form A+iBw or
A+iB/w would violate Nernst’s theorem is incorrect; on the
contrary, we argue that so long as A and B are temperature
independent, none of these will. Using an analytical software
such as MAPLE, it is quick to check that integration of H(x,?)
with respect to x followed by differentiation with respect to ¢
gives the same result as when the order of the operations is
reversed. While this argument is not rigorous it should con-
vince the reader that the continuity issues at zero temperature
and frequency can be avoided since this point is of no physi-
cal significance.

A formally similar problem emerges when the permittivity
is temperature dependent all the way down to zero tempera-
ture, as we will see, and in the latter case the singularity at
zero temperature and frequencies does appear to give a
physical contribution and cannot be ignored.

C. Uniform convergence

An improper integral (8) is said to converge uniformly
([15] §4.42) if V &£>0 there exists a number a,>0 indepen-
dent of T such that for all a,a’ =ay,

<e.

fa’ dx f(x,T)

a

Let us briefly analyze the behavior of InD(w,k ) as |w| and
k, approach infinity. The existence of the free energy inte-
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gral (5) itself is well known; hence we need but check ex-
plicitly whether the integral (7) converges uniformly along
different directions in the w,ck | plane; clearly, if the double
integral over w and k, converges uniformly, the w integral
(7) does so as well.

As argued, we consider propagating and evanescent con-
tributions separately, in which case uniform convergence is
straightforward to check. Reflection coefficients fall off rap-
idly as |w| — < (e.g., for the Drude model the real and imagi-
nary parts of rﬁ fall off as ™ and w™, respectively) and for
|8]>1,  is real and positive so the integrand furthermore
decreases exponentially. The factor exp(—2«,a) is oscillatory
for |B|<1, but the Dirichlet integral [jdx sinx/x is known
to be uniformly convergent, and our integrand converges
more quickly than this. It is easy to check that this also holds
as |B|—0 and |B| — <.

The splitting of (2) into propagating and evanescent parts
may be done by integrating each part of the plane and taking
the relevant limit to ck | — |w| in the end. Convergence prob-
lems are then avoided for the imaginary part of InD, in (7);
reflection coefficients fall off rapidly and further help is pro-
vided by the factor

exp(w/wy)

=~ exp(-|o|/w7), |w|> wr.

(exp(w/wp) - 1)
The rate of convergence due to this factor depends on 7 and
hence apparently cannot be used to demonstrate uniformity.
We are interested only in low temperatures, however, so, by

defining a finite upper temperature limit T above which the
formalism is not valid, a, can be made T independent (de-

pendent on T only). The fact that the convergence of this
factor alone is not uniform for infinite temperature is unprob-
lematic, of course.

Thus we conclude that Nernst’s theorem is satisfied for
T-independent e(w) satisfying 1-3. The violation of Nernst’s
theorem in temperature-dependent cases, as we shall see, can
be understood as a direct consequence of violating the con-
tinuity criterion of Leibnitz’ rule for improper integrals.

III. TEMPERATURE-DEPENDENT PERMITTIVITY

In many models used in solid state physics, € is tempera-
ture dependent for all temperatures, and herein lies the
source of much of the controversy over what is the correct
theory of the Casimir force between plates of real materials.
The reader should note that the above theory only requires
that permittivity be temperature independent for a finite tem-
perature interval close to zero temperature. Rather than rig-
orously generalizing all of the above, suffice it here to dis-
cuss how the introduction of temperature-dependent
permittivity illuminates the entropy problems that emerge
and hints at possible resolutions. In the following we will
think physically in terms of positive frequencies, bearing in
mind that negative frequencies exert mathematically equiva-
lent behavior through the symmetry criterion 1.

The models which have caused bother so far are the TE
mode of (5) using the Drude model (9) when ¥(T)—0 as
T—0 (perfect lattice, no impurities) and the TM mode for
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FIG. 2. Real and imaginary parts of r%M with (10) for o, \w—y
<k, c, wy and w~ o/ €y as simplified in (15) with €,=11.66, as
function of (a) independent x and s and (b) v=x/s.

dielectrics (10) with o(T)— 0. The two different cases share
many common traits, so analyzing one of them in detail will
suffice as illustration. Since the Drude model has already
been treated in numerous efforts by both sides of the dispute
(e.g., [2,5]), we choose the dielectric for the discussion be-
low.

As should be clear by now, the troubles with entropy
emerge for small frequencies at low temperatures. Let us
from now on consider the only interesting frequency range in
which w2,7w<kic2,w%, but making no assumptions about
the relative magnitude of w and o/ €,. Physically this corre-
sponds to bringing w and T close enough to the limit so that
for all quantities that depend on their absolute values sepa-
rately they may be replaced by zero, and only quantities that
depend on their relative values, specifically the TM reflection
coefficient, remains in question. In this case rpy with (10)
inserted simplifies to

_ (iweylo)(€,—1) = 1 B iv(e,—1)—1
" (iwefo) e+ 1) =1 iv(es+1)—1

'™ (15)

where v = wey/ c=x/s where x and s are again suitably non-
dimensionalized variables proportional to w and o, respec-
tively. We have plotted the real and imaginary parts of the
squared reflection coefficients as shown in Fig. 2 for illustra-
tion, using €,=11.66 as reported for Si in [22].

We find that Re{r%M} is rg=(€,~1)*/(€,+1)*>=~0.71 ex-
cept for x<s (v=0) where it is unitary. Likewise Im{rf,,}
for small s is approximately zero for the most part but in-
creases to an extremum for small |v| and thence decreases
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linearly through 0 at v=0, the same linear behavior that led
to Im{¢p(w)} > w and the discontinuity of Fig. 1 in the TM
case before, which we argued was not essential. This time,
however, there are additional discontinuities as s—0
(equivalent to o—0). In particular, Im{r%M} (which contrib-
utes to the integrals) is 0 everywhere except at x=0 where it
can take any value between its maximum and minimum
(= =*0.079 for €,=11.66).

Now remember that the imaginary part of the squared
reflection coefficient shown in Fig. 2 is to be multiplied with
either the coth factor or its 7T derivative, both of which di-
verge as T/w as w— 0. The result is an exceedingly volatile
behavior of the integrands of (5) and (7) near zero frequency
and temperature, and the limit where both are zero can take
any value between — and % depending on the way the limit
is taken. This contrasts the bounded discontinuity shown in
Fig. 1 in the temperature-independent case.

Furthermore, when e contains temperature-dependent pa-
rameters, the entropy (7) will have an additional term

™
(" 209 coth(w/2wy) I(r?
ﬂl'f do 2 - 2 E;:awT) ( Q)' (16)
8 _oo g=TE 1- I’qe 0 JaT

Additional entropy problems stem from this term. From (15)
one finds with a little algebra that
d ., ivlex,—1)-1 140
— () == 4iv————————. 17
o™ “livie,+ 1)1 ¢ dT (17)

Assuming conductivity at low temperatures to behave as
oy exp(=T,/T) with o a constant (see below),

When w # 0 this inverse quadratic temperature dependence is
no problem since (17) varies as v~ « o, so the term (16) is
zero by a good measure when 7=0. The limit w— 0 may be
taken so that v has a finite value, however, in which case the
derivative (17) diverges as T~2. This corresponds to 73, mak-
ing a sudden jump from 1 to r(z) at 7=0 for w=0. The term
&(ré)/ dT at T=0 is thus zero for all frequencies except w
=0, where it is infinite. We can no longer argue that this one
point does not contribute to the physical quantity S, and
while the purported zero-temperature entropy may be diffi-
cult to calculate in this way (it is straightforward to calculate
it in the imaginary frequency framework), it seems likely
that the entropy obtains a finite value assuming the formal-
ism may be taken at face value.

A. Findings of the mathematical analysis

An important realization is thus that a violation of the
third law of thermodynamics is predicted in the present
framework when €(w) changes the power of its leading order
term with respect to w at exactly zero temperature. When
€(w) changes from *w™ to *w™!, a violation occurs in the
TE mode; when the change is from cw ! to «w?, the TM
mode gives the zero-temperature entropy contribution.
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The bottom line is that, when viewed in the framework of
real frequencies, all apparent zero-temperature entropy
anomalies stem from divergencies of the Lifshitz integrand
in the double limit 7— 0 and w— 0. The reader should note
that in this author’s understanding, this result does not con-
tradict the findings of either [1,3-7] or [2,8,9]. The last of
these references also notes a formal violation of Nernst’s
theorem due to rotation of permanent ionic dipole moments
in the materials. In light of the above, we may conclude that
the latter effect is only problematic in media where the rota-
tional degree of freedom of the ions vanishes with tempera-
ture in such a manner that its resonant frequency is finite at
T>0 and zero at T=0. This anomaly needs to be studied
further in the future.

B. Physical discussion of thermodynamical anomalies

In this section we will undertake a brief physical discus-
sion of the mathematical results in the previous sections,
reviewing the temperature debate for metals and semicon-
ductors in light of the above analysis. Models used when
studying the physics of real systems are founded on assump-
tions which we may categorize as modeling idealizations and
approximations in the description of the behavior of these
models, and there may be a need to distinguish between
these in the present context. A relevant modeling idealiza-
tion, for example, is that a metal sample has infinitely large
dimensions and a perfect crystal lattice structure. Much of
science is founded on such ideal models and corrections to
them. A relevant approximation in this context is the use of
simple dielectric functions such as (9)—(12) which in particu-
lar assume that the media in question have local dielectric
response (i.e., they depend only on frequency, not momen-
tum k). Even for idealized systems, such approximations
typically have limitations.

An ideal model which can in principle be realized (not-
withstanding its infeasibility in practice) cannot be allowed
to violate the laws of nature, thermodynamics in particular.
An approximation, on the other hand, will typically have a
finite range of applicability, and cannot be expected to be-
have correctly outside this range. Given that the limits 7=0
and w=0 are in some ways extreme cases, it is especially
important to investigate the latter point in relation to the
purported problems with the third law of thermodynamics.
Specifically, if an approximation which works well at room
temperature does not hold for 7=0 one cannot conclude from
a formal violation of Nernst’s theorem that it cannot be used
within its applicability range.

The much investigated temperature anomaly for metals is
a good example of the above, and we will review it briefly
for illustration. For a perfect and infinitely large metal lattice,
the relaxation »(T) is due to electron-phonon interactions
only and follows the Bloch-Griineisen formula (see Appen-
dix D of [3]), according to which v vanishes as 7° as tem-
perature tends to zero, leading to the above reported anoma-
lies. It has been pointed out that no real metal sample is ever
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perfect [3] nor infinitely lalrge,5 so relaxation does not vanish
in real systems. There is now consensus that for impure met-
als the Drude relation does not lead to thermodynamic incon-
sistencies.

However, the theoretical problem is thereby only halfway
solved, because as pointed out [2] the fulfilment of the laws
of nature cannot hinge upon the presence of imperfections:
the ideal system should accord with thermodynamics as well.
The solution according to the authors of [2] is to remove the
relaxation from the Drude model and, more recently, intro-
duce dissipation instead through a generalized plasma model
[16], unfortunately at the expense of ignoring the manifest
presence of relaxation at room temperature. Experiments
seem to confirm the predictions from such a procedure and
rule out those implied by the use of the Drude model (9)
(e.g., [23]) but the theory has not been universally accepted.

While the ideal crystal lattice, when treated in all detail,
should certainly be found to abide by Nernst’s theorem, the
approximation that its dielectric response is well described
by the local formalism has been questioned for temperatures
approaching T=0. Svetovoy and Esquivel [26] and Sernelius
[27] conclude independently that at low temperatures nonlo-
cal effects (the anomalous skin effect) dominate, and the lo-
cal models are no longer reliable. Their analyses accounting
for spatially dispersive effects reveal that, within the ap-
proximations made in [26,27] Nernst’s theorem is satisfied
independently of the presence of imperfections, as it should
be. The spatial dispersion approach was criticized [28] on
several accounts with reference to a treatment by Barash and
Ginzburg many years ago [29] (see also [30]). The paradox
remains that such a careful procedure (albeit not free of ap-
proximations) does not accord with available experimental
data. Commendable efforts at a resolution include the recent
exploits by Bimonte [31].

While mathematically analogous to the metal case, the
temperature anomaly for semiconductors is physically differ-
ent. Here the problem is not related to idealized models (the
conductivity of insulators truly does vanish at zero T), but
approximations only.

One can argue intuitively that the approximate model (10)
probably cannot be taken at face value when conductivity is
very small since it implies that even an infinitesimal conduc-
tivity should give rise to large thermal corrections in the
Lifshitz formalism, contrary to physical intuition. For insu-
lators, by definition, conductivity vanishes at 7=0, and for
many such materials the conductivity even at room tempera-
ture is so small it would be expected to make for a minor
perturbation only.6 If (10) is a poor approximation at low
frequencies as o vanishes, its violating thermodynamic laws
in this case may not be too worrisome.

A recent experiment [22] measured the force between a
substrate of the semiconductor silicon and a gold sphere. The

The conductivity of very pure metals at low temperatures is
found experimentally to be sample size dependent [24] so even
assuming perfectly pure metal, v still reaches a finite value when its
Bloch-Griineisen mean free path becomes comparable to the sample
dimensions.

SFor an introduction to different types of semiconductors, see
Chap. 1 of [25].
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semiconductor was excited into a metallic state by a pulsed
laser and it was concluded that while the model (10) was a
good representation in the metallic state, the inclusion of the
o term when the material was in the poorly conducting state
was excluded at 95% confidence. This conclusion may not be
surprising in light of the above argument, which indicates
that a Drude-type permittivity model overestimates the effect
of a small conductivity in the Lifshitz formalism. If so, it is
likely that the experimental result might be explained with-
out reference to the Nernst theorem, which concerns physics
far removed from laboratory conditions.

Attempts at a more careful description of the effect of a
small density of free charges were recently made by Pitae-
vskii [32] and by Dalvit and Lamoreaux [33], based on the
effects of Debye-Hiickel screening from free charges in
mean field theory. The resulting expressions do not fit experi-
mental data well [34], and it is possible that a more detailed
screening model is needed.

CONCLUSION

While the Lifshitz formalism at real frequencies is much
more complicated than the imaginary frequency equivalent
normally considered, the consideration of quantities with di-
rect physical interpretations sheds added light on the prob-
lem of nonvanishing Lifshitz entropy at zero temperature.
We have argued that Nernst’s heat theorem is not violated for
any causal and continuous (except at w=0) e(w) which is
independent of 7 near 7=0. This accords with the findings of
Intravaia and Henkel [11] using a different approach. More
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generally, this holds for dielectric plates whose squared
Fresnel TE and TM reflection coefficients are continuous for
all w and T and nonunitary except at w=0. It follows from
this that the entropy anomalies previously reported pertain to
the persistence of the permittivity’s temperature variance all
the way to zero temperature and are consequences of diver-
gencies in the Lifshitz formalism in the double limit w—0
and T—0.

When considering physical consistency in such limits as a
means to distinguish between candidate theories, particular
care must be taken. We emphasize that approximations can
be judged only based on their performance within their do-
main of applicability. Specifically, approximations which are
invalid at 7=0 cannot be expected to be well behaved in this
limit, and hence cannot be rejected for causing violation of
Nernst’s theorem, which concerns zero temperature only. It is
therefore important to verify carefully that approximate
physical models probed by invoking Nernst’s theorem are
valid in this case. We finally argue that a recent experiment
using an optically excited semiconductor can probably be
explained without reference to the Nernst theorem by ac-
counting for the presence of free charges more carefully than
by the use of local Drude-type models.
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